SYNTHESIS AND CYCLIZATION OF SOME 5-AMINOBENZIMIDAZOLE AND 5-AMINOBENZOTRIAZOLE DERIVATIVES

Vladimír Bobošíka, Viktor Milata ${ }^{a}$, Dušan Ilavsk ${ }^{a}{ }^{a * *}$ and Igor Goljer ${ }^{b}$

${ }^{a}$ Department of Organic Chemistry, Slovak Technical University, 81237 Bratislava
${ }^{\text {b }}$ Central Laboratory of Chemical Technique, Slovak Technical University, 81237 Bratislava

Received February 12, 1991

Accepted July 4, 1991
Dedicated to Dr Miroslav Protiva on the occasion of his 70th birthday.

Abstract

Alkoxymethylene derivates I of 2,4-pentanedione, 3-oxobutanenitrile, and methyl and ethyl 3 -oxobutanoates with substituted 1 -phenyl- 5 -aminobenzimidazoles and -benzotriazoles $1 I$ give the products of nucleophilic substitution $I I I$ and $I V$ which, bearing ester groups, undergo thermal cyclizations to the corresponding 8 -acetyl-3-phenyl-6,9-dihydroazolo[4,5-f]quinolin-9(3H)-ones V and $V I$. IR, UV, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are given.

Alkoxymethylene derivates of β-dicarbonyl compounds, such as esters and nitriles of malonic, cyanoacetic and acetoacetic acids, and acetylacetone react with benzimidazoles and benzotriazoles bearing amino group in benzene ring to give products of nucleophilic substitution of the alkoxy groups with heterocyclic amine rests. Thermal cyclizations of the products formed from esters yield imidazo- and triazoloquinolinones ${ }^{1-4}$. These compounds can serve as precursors in syntheses of the antibacterial nalidixic type compounds ${ }^{5}$.

The present work deals with the nucleophilic substitution reaction of alkoxymethylene derivatives I of 2,4-pentanedione and of nitrile and esters of 3-oxobutanoic acid with substituted 1-phenyl-5-aminobenzimidazoles and -benzotriazoles $I I$. It comprises also a study of regioselectivity in the subsequent thermal cyclocondensation of the substitution products $I I I$ and IV (Scheme 1). Thermal catalytic cyclization with AlCl_{3} through cyano group was studied on the malononitrile compounds ${ }^{6}$.

The nucleophilic substitution of alkoxymethylene derivatives I with amines $I I$, carried out under mild conditions (short boiling of the methanolic solution), affords high yields of substitution products $I I I$ and $I V$ (Table I). The requisite alkoxymethylene derivatives I were prepared by the condensation of an alkyl orthoformate with an active methylene compound ${ }^{4}$. Amino derivatives $I I$ were prepared by the catalytic reduction of the corresponding nitro derivatives ${ }^{1}$.

Substitution products $I I I$ and $I V$ bearing an alkoxycarbonyl group cyclize upon boiling in an inert medium of Dowtherm at $250^{\circ} \mathrm{C}$ to give angularly annelated

In formulae III and $N: a, R=A c ; R^{\prime}=M e ; b, R=A c ; R=C l ; ~ a, R=C N ; R^{\prime}=M e$; $d, \mathrm{R}=\mathrm{CN} ; \mathrm{R}^{\prime}=\mathrm{Cl}_{;} \quad$ e, $\mathrm{R}=\mathrm{COOMe} ; \mathrm{R}^{\prime}=\mathrm{Me} ; \quad t, \mathrm{R}=$ COOMe ; $\mathrm{R}^{1}=\mathrm{Cl} ; g, \mathrm{R}=\mathrm{COOEt}$; $R^{\prime}=M e ; ~ h, R=C O O E t ; R^{\prime}=C l$

Scheme 1

8-acetyl-3-phenyl-6,9-dihydroimidazo[4,5-f]quinolin-9(3H)-ones and 8-acetyl-3-phe-nyl-6,9-dihydro $[1,2,3]$ triazolo [4,5-f]quinolin- $9(3 H)$-ones. The yields of the cyclization of methyl and ethyl esters were similar. The amount of Dowtherm used as well as the reaction time must be carefully chosen. Thus, the low ratio solvent/LII or IV led to partially carbonized products, whilst the high ratio complicated the separation of the product which was formed in a gel-like, difficult to isolate form.

The IR spectra of the substitution products III and IV (Table II) show the characteristic vibrations of acetyl groups shifted to lower wavenumbers owing to the strong

Table I
Properties of substituted 1-phenyl-5-aminobenzimidazoles 1II, 1-phenyl-5-aminobenzotriazoles $I V$, and azolo[4,5-f]quinolinones V and $V I$

Compound	Formula (M. w.)	Calculated/Found				$\begin{aligned} & \text { M.p. } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Yield \%
		\% C	\% H	\% Cl	\% N		
IIIa	$\underset{(333 \cdot 4)}{\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}}$	$\begin{aligned} & 72.05 \\ & 69.84 \end{aligned}$	$\begin{aligned} & 5.74 \\ & 5.65 \end{aligned}$	-	$14 \cdot 40$	128-129	78.9
$111 b$	$\underset{(353.8)}{\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{2}}$	$\begin{aligned} & 64 \cdot 50 \\ & 64 \cdot 38 \end{aligned}$	$\begin{aligned} & 4 \cdot 56 \\ & 4.48 \end{aligned}$	$\begin{aligned} & 10 \cdot 02 \\ & 10 \cdot 21 \end{aligned}$	$\begin{aligned} & 11.88 \\ & 11.93 \end{aligned}$	203-204	$77 \cdot 9$
HIC	$\underset{(316 \cdot 4)}{\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}}$	$\begin{aligned} & 73.06 \\ & 72.91 \end{aligned}$	$\begin{aligned} & 5 \cdot 16 \\ & 5.08 \end{aligned}$	-	$\begin{aligned} & 17.94 \\ & 17.81 \end{aligned}$	235-237	$82 \cdot 1$
1/1/d	$\underset{(336 \cdot 8)}{\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}}$	$\begin{aligned} & 64 \cdot 20 \\ & 64 \cdot 11 \end{aligned}$	$\begin{aligned} & 3.99 \\ & 3.99 \end{aligned}$	$\begin{aligned} & 10.53 \\ & 10.38 \end{aligned}$	$\begin{aligned} & 16 \cdot 64 \\ & 16 \cdot 49 \end{aligned}$	193-195	$83 \cdot 0$
HIe	$\underset{(349 \cdot 4)}{\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}}$	$\begin{aligned} & 68.75 \\ & 68.70 \end{aligned}$	$\begin{aligned} & 5.48 \\ & 5.61 \end{aligned}$	-	$\begin{aligned} & 12.03 \\ & 11.89 \end{aligned}$	144-145	66.8
IIIf	$\underset{(369 \cdot 8)}{\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{3}}$	$\begin{aligned} & 61 \cdot 71 \\ & 61 \cdot 52 \end{aligned}$	$\begin{aligned} & 4.36 \\ & 4.20 \end{aligned}$	$\begin{aligned} & 9.56 \\ & 9.46 \end{aligned}$	$\begin{aligned} & 11 \cdot 36 \\ & 11 \cdot 21 \end{aligned}$	170-171	$67 \cdot 1$
IIIg	$\underset{(363 \cdot 4)}{\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}}$	$\begin{aligned} & 69 \cdot 41 \\ & 69 \cdot 30 \end{aligned}$	$\begin{aligned} & 5.82 \\ & 5.98 \end{aligned}$	-	$\begin{aligned} & 11.56 \\ & 11.70 \end{aligned}$	140-141	$67 \cdot 4$
IIIh	$\underset{(383.8)}{\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{3}}$	$\begin{aligned} & 62 \cdot 58 \\ & 62 \cdot 41 \end{aligned}$	$\begin{aligned} & 4.73 \\ & 4.84 \end{aligned}$	$\begin{aligned} & 9 \cdot 24 \\ & 9 \cdot 11 \end{aligned}$	$\begin{aligned} & 10 \cdot 95 \\ & 10.72 \end{aligned}$	160-162	69.2
IVa	$\underset{(334 \cdot 4)}{\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}}$	$\begin{aligned} & 69 \cdot 07 \\ & 69 \cdot 14 \end{aligned}$	$\begin{gathered} 5 \cdot 49 \\ 5 \cdot 60 \end{gathered}$	-	$\begin{aligned} & 16.96 \\ & 16.85 \end{aligned}$	185-186	$80 \cdot 1$
IVb	$\underset{(354.9)}{\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{2}}$	$\begin{aligned} & 60 \cdot 92 \\ & 60 \cdot 84 \end{aligned}$	$\begin{aligned} & 4.26 \\ & 4.36 \end{aligned}$	$\begin{aligned} & 9.99 \\ & 9.81 \end{aligned}$	$\begin{aligned} & 15.79 \\ & 15.65 \end{aligned}$	209-211	81.6
IVC	$\underset{(317 \cdot 4)}{\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}}$	$\begin{aligned} & 68.13 \\ & 68.05 \end{aligned}$	$\begin{aligned} & 4.76 \\ & 4.91 \end{aligned}$	-	$\begin{aligned} & 22.07 \\ & 22.00 \end{aligned}$	233-235	88.4
IVd	$\underset{(337.8)}{\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{O}}$	$\begin{aligned} & 60 \cdot 45 \\ & 60 \cdot 33 \end{aligned}$	$\begin{aligned} & 3.58 \\ & 3.70 \end{aligned}$	$\begin{aligned} & 10.50 \\ & 10.39 \end{aligned}$	$\begin{aligned} & 20 \cdot 73 \\ & 20 \cdot 50 \end{aligned}$	275-277	$91 \cdot 6$
IVe	$\underset{(250 \cdot 4)}{\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}}$	$\begin{aligned} & 65 \cdot 88 \\ & 65 \cdot 82 \end{aligned}$	$\begin{gathered} 5 \cdot 23 \\ 5 \cdot 11 \end{gathered}$	-	$\begin{aligned} & 16 \cdot 17 \\ & 16 \cdot 02 \end{aligned}$	131-132	$69 \cdot 4$
IVf	$\underset{(370 \cdot 9)}{\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{3}}$	$\begin{aligned} & 58.29 \\ & 58.12 \end{aligned}$	$\begin{aligned} & 4.08 \\ & 4.19 \end{aligned}$	$\begin{aligned} & 9 \cdot 56 \\ & 9 \cdot 42 \end{aligned}$	$\begin{aligned} & 15 \cdot 11 \\ & 15 \cdot 24 \end{aligned}$	171-172	$73 \cdot 4$
IVg	$\underset{(364 \cdot 4)}{\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}}$	$\begin{aligned} & 65 \cdot 92 \\ & 65 \cdot 74 \end{aligned}$	$\begin{aligned} & 5.53 \\ & 5.62 \end{aligned}$	-	$\begin{aligned} & 15 \cdot 37 \\ & 15 \cdot 44 \end{aligned}$	139-140	71.2
IVh	$\underset{(384 \cdot 8)}{\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{3}}$	$\begin{aligned} & 59 \cdot 30 \\ & 59 \cdot 14 \end{aligned}$	$\begin{aligned} & 4.45 \\ & 4.58 \end{aligned}$	$\begin{aligned} & 9 \cdot 21 \\ & 9 \cdot 10 \end{aligned}$	$\begin{aligned} & 14.56 \\ & 14.36 \end{aligned}$	169-170	$74 \cdot 3$

Table I
(Continued)

Compound	Formula (M. w.)	Calculated/Found				$\begin{gathered} \text { M.p. } \\ { }^{\circ} \mathrm{C} \end{gathered}$	Yield \%
		\% C	\% H	$\% \mathrm{Cl}$	\% N		
$V a$	$\underset{(317 \cdot 4)}{\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}}$	71.83	$4 \cdot 73$	-	$13 \cdot 23$	<360	$54 \cdot 2^{a}$
		71.62	4.91		$13 \cdot 11$		
$V b$	$\underset{(337 \cdot 8)}{\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2}}$	63.94	$3 \cdot 55$	10.49	$12 \cdot 43$	<360	$62 \cdot 8^{a}$
		63.72	$3 \cdot 70$	10.31	$12 \cdot 34$		
Vla	$\underset{(318 \cdot 4)}{\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}}$	$67 \cdot 84$	$4 \cdot 40$	-	17.59	<360	$64 \cdot 8^{a}$
		$67 \cdot 99$	$4 \cdot 23$		$17 \cdot 38$		
$V I b$	$\underset{(338.9)}{\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}_{2}}$	$60 \cdot 19$	$3 \cdot 25$	10.46	16.52	<360	$71 \cdot 2^{\text {a }}$
		$60 \cdot 05$	$3 \cdot 40$	$10 \cdot 32$	$16 \cdot 40$		

${ }^{a}$ From the cyclization of ethyl esters.

Table II
UV and IR data of substituted 1-phenyl-5-aminobenzimidazoles III, 1-phenyl-5-aminobenzotriazoles $I V$ and azolo[4,5-f]quinolinones V and $V I$

Compound		$\begin{gathered} \lambda_{\max }, \mathrm{nm} \\ \log \varepsilon \end{gathered}$		$\begin{gathered} \tilde{v}(\mathrm{C}=\mathrm{O}) \\ \mathrm{cm}^{-1} \end{gathered}$	$\tilde{v}(\mathrm{C}=\mathrm{N}) \text { and } \tilde{\mathrm{cm}^{-1}} \tilde{v}(\mathrm{C}=\mathrm{C})$
IIIa	-	258	342	1652	1589,1518
		$3 \cdot 30$	$3 \cdot 39$		
IIIb	-	259	342	1630	1591,1502
		$3 \cdot 38$	$3 \cdot 43$		
IIIC	227	$243^{\text {a }}$	345	1651	1612,1520
	$3 \cdot 35$	$3 \cdot 28$	3.43	$2199{ }^{\text {b }}$	
IIId	224	$253{ }^{\text {a }}$	347	1655	1610,1502
	$3 \cdot 31$	$3 \cdot 23$	3.55	$2205^{\text {b }}$	
IIIe	-	244	341	1684	$1595,1568,1518$
		$3 \cdot 44$	$3 \cdot 47$	1626	
IIIf	-	243	342	1686	$1601,1574,1498$
		$3 \cdot 38$	3.43	1628	
IIIg	-	244	342	1686	$1599,1566,1518$
		$3 \cdot 41$	3.45	1626	
IIIh	-	242	341	1707	$1634,1612,1502$
		$3 \cdot 37$	$3 \cdot 42$	1684	

Table II
(Continued)

Compound		$\begin{gathered} \lambda_{\max }, \mathrm{nm} \\ \log \varepsilon \end{gathered}$		$\begin{gathered} \tilde{v}(\mathrm{C}=\mathrm{O}) \\ \mathrm{cm}^{-1} \end{gathered}$	$\underset{\mathrm{cm}^{-1}}{\tilde{v}(\mathrm{C}=\mathrm{N}) \text { and } \tilde{v}(\mathrm{C}=\mathrm{C})}$
IVa	-	260	342	1616	$1595,1570,1518$
		$3 \cdot 27$	$3 \cdot 45$		
IVb	-	261	339	1626	1589,1502
		$3 \cdot 29$	$3 \cdot 42$		
$I V C$	221	$324^{\text {a }}$	342	1664	1597,1522
	$3 \cdot 38$	$3 \cdot 37$	$3 \cdot 40$	$2205^{\text {b }}$	
IVd	223	259	341	1662	$1622,1597,1508$
	$3 \cdot 34$	$3 \cdot 20$	$3 \cdot 39$	$2204{ }^{\text {b }}$	
IVe	-	235	340	1715	$1635,1616,1570$
		$3 \cdot 31$	$3 \cdot 40$	1703	
IVf	-	234	337	1695	$1608,1589,1568$
		$3 \cdot 32$	3.41		
$I V g$	-	235	340	1713	1635
		$3 \cdot 31$	$3 \cdot 39$	1693	
$I V h$	-	235	338	1682	1630,1599
	-	$3 \cdot 31$	$3 \cdot 39$	1664	
Va	236	277	$347{ }^{\text {a }}$	1647	$1616,1568,1520$
	-	-	-		
Vb	-	282	351^{c}	1655	1616,1574,1533
	-	-	-		
VIa	234	274	$347^{\text {c }}$	1664	1612,1574,1533
	-	-	-		
$V 1 b$	-	277	345	1662	$1614,1576,1525$
	-	-	-		

${ }^{a}$ Inflex; ${ }^{b} \tilde{v}(\mathrm{C} \equiv \mathrm{N}) ;{ }^{c}$ saturated solution.
conjugation. The electron-withdrawing effect of the nitrile group in IIIc, IIId, IVc and IVd accounts for the higher values of $\tilde{v}(\mathrm{C}=\mathrm{O})$. In UV spectra of the substitution products (Table II) the longest-wavelength absorption maximum lies at 340 nm , i.e. by 7 nm higher than that of analogous derivatives of the benzazolylaminomethylenemalonic type ${ }^{1}$. This bathochromic shift is a consequence of stronger intramolecular hydrogen bond between the acetyl carbonyl group and the NH proton as compared with that formed by carbonyl.
Table III
${ }^{1} \mathrm{H}$ NMR chemical shifts ($\delta, \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3}$) and coupling constants (Hz) of substituted 1-phenyl-5-aminobenzimidazoles $11 I$ and 1 -phenyl--5-aminobenzotriazoles IV

Compound	$\mathbf{H} \cdot \mathbf{2}^{\mathbf{a}}$	H-4 ${ }^{\text {b }}$	H-6 ${ }^{\text {c }}$	$\mathrm{H} \cdot \mathrm{T}^{\text {b }}$	H-8 ${ }^{\text {b }}$	NH ${ }^{\text {b }}$	$\mathbf{M e}{ }^{\text {a }}$	H-13 ${ }^{\text {b }}$	H-14 ${ }^{\text {b }}$	\mathbf{R}	$\mathrm{R}^{1 a}$	${ }^{3} J(8-N H)$
IIIa	8.51	7.97	$7 \cdot 38$	7.57	8.49	12.72	2.40	7.43	7.54	2.35 s	$2 \cdot 30$	12.9
IIIb	8.55	7.98	$7 \cdot 36$	7.56	8.43	12.67	2.41	$7 \cdot 61$	7.66	2.32 s	-	12.6
IIIc	8.47	7.87	$7 \cdot 36$	7.49	8.33	12.21	2.41	$7 \cdot 34$	7.46	-	$2 \cdot 22$	$13 \cdot 8$
	8.48	$7 \cdot 80$			8.43	10.75	2.31				$2 \cdot 21$	$13 \cdot 8$
IIId	8.59	7.95	7.45	7.62	8.49	12.29	$2 \cdot 50$	$7 \cdot 67$	$7 \cdot 72$	-	-	13.2
		7.88		7.67	8.41	10.75	2.31					$13 \cdot 8$
HIIe	8.51	7.92	$7 \cdot 33$	$7 \cdot 54$	8.40	12.64	2.41	$7 \cdot 59$	$7 \cdot 64$	2.72 s	$2 \cdot 32$	12.9
							2.31			3.811		
IIIf	8.43	$8 \cdot 39$	7.23	$7 \cdot 50$	$8 \cdot 50$	12.59	2.41	$7 \cdot 60$	$7 \cdot 60$	3.63 s	-	$12 \cdot 3$
						10.58	2.34			3.72 s		
IIIg	8.44	7.71	$7 \cdot 24$	7.49	8.42	12.62	$2 \cdot 42$	$7 \cdot 33$	7.44	4.09 q	$2 \cdot 35$	$13 \cdot 2$
					8.39	$10 \cdot 72$	$2 \cdot 35$			1.20 t		
IIIh	8.42	$7 \cdot 60$	7.25	$7 \cdot 85$	8.40	12.55	2.41	7.55	7.60	$4 \cdot 114$	-	13.2
					8.39	10.65	$2 \cdot 35$					$13 \cdot 2$
IVa	-	$8 \cdot 24$	$7 \cdot 72$	7.49	8.44	12.62	2.41	7.33	7.44	2.34 s	$2 \cdot 32$	$13 \cdot 2$
IVb	-	$8 \cdot 29$	$7 \cdot 80$	7.65	8.44	12.55	2.41	7.40	'1.50	$2 \cdot 33 \mathrm{~s}$	-	$12 \cdot 3$
IVc	-	8.27	7.90	$7 \cdot 79$	8.52	12.23	$2 \cdot 50$	7.49	7.75	-	2.35	$13 \cdot 2$
				7.74	8.57	10.92	2.44				$2 \cdot 32$	$13 \cdot 8$
$I V d^{\text {d }}$	-	$8 \cdot 16$	8.08	7.89	8.43	$10 \cdot 10$	2.45	7.68	$7 \cdot 87$	-	-	-
IVe	-	$8 \cdot 18$	7.66	7.87	8.56	12.65	2.40	7.48	$7 \cdot 71$	3.73 s	2.40	$13 \cdot 2$
		$8 \cdot 12$			8.54	$10 \cdot 80$	$2 \cdot 39$			3.82 s		$13 \cdot 2$
IVf	-	8.21	7.67	7.87	8.50	12.58	2.41	$7 \cdot 66$	$7 \cdot 84$	3.63 s	-	$13 \cdot 5$
		$8 \cdot 13$			8.47	10.68	2.38			3.72 s		
IVg	\cdots	$8 \cdot 10$	7.59	7.78	8.45	12.55	2.41	$7 \cdot 38$	7.63	$4 \cdot 10 \mathrm{q}$	$2 \cdot 34$	$13 \cdot 2$
		8.05				10.72	$2 \cdot 34$			1.21 t		
IVh	-	8.21	$7 \cdot 66$	7.87	8.48	$12 \cdot 56$	2.41	$7 \cdot 66$	$7 \cdot 84$	$4 \cdot 10 \mathrm{q}$	-	13.2
		$8 \cdot 14$			8.42	$10 \cdot 80$	2.35					$13 \cdot 2$

${ }^{a}$ Singlets; ${ }^{b}$ doublets; ${ }^{c}$ doublets of doublets; ${ }^{d}$ not observed due to low solubility.

The presence of the condensed 4-pyridone skeleton in the cyclization products is manifested by a slightly bathochromically shifted and significantly less intense longest-wavelength band in the UV spectra.

In the ${ }^{1} \mathrm{H}$ NMR spectra of compounds III and IV (Table III), it is possible to observe signals of protons with the expected multiplicities. The value of the interaction constant ${ }^{3} J$ between the hydrogen of the amino group and $\mathbf{H}-8$ (about 13 Hz) confirms the antiperiplanar conformation of the enamine group stabilized by an intramolecular hydrogen bond. The multiplicities of the signals of the enamine substituent and the benzene ring of the benzazole skeleton prove the existence of geometric isomerism in unequally substituted derivatives IIIc-IIIh and IVc-IVh. Similar isomerism is missing in 2,4-pentanedione derivatives IIIa, IIIb,IVa and $I V b$. The greater electron-withdrawing effect of 1-phenyltriazole in comparison with that of 1-phenylimidazole manifests itself especially in the shifts of the $\mathrm{H}-4, \mathrm{H}-6$ and H-7 signals. Out of 1-phenyl, 1-methyl ${ }^{3}$ and unsubstituted ${ }^{2}$ benzimidazole derivatives only the 1-phenylbenzimidazole derivatives have the $\mathrm{H}-2$ signal shifted to lower field by about 0.2 to 0.3 ppm .

The angular annelation of products of thermal cyclization is evidenced by the ortho position of protons of the benzene ring, which is evident from the high value of the interaction constant ${ }^{3} J(4,5)$ of over 9.0 Hz (Table IV).

The ${ }^{13} \mathrm{C}$ NMR spectra of compounds $I I I$ and $I V$ (Table V) confirm the geometric isomerism due to the enamine double bond by showing doublets of signals of the substituent R and the benzene ring of the benzazole skeleton. It is evident that the greater electron-accepting effect of 1-phenyltriazole versus 1-phenylimidazole affects especially the chemical shift of C-6. The shift of signals of carbon atoms of the phenyl substituent in position 12 is affected mainly by the azole ring, and to a lesser extent also by the substituent in the para position. The electron-accepting effect of the substituent R on enamine double bond decreases in the order $\mathrm{CN}<\mathrm{COOMe}$

Table IV
${ }^{1} \mathrm{H}$ NMR chemical shifts (δ, ppm; $\mathrm{CF}_{3} \mathrm{COOD}$) and coupling constants (Hz) of 8-acetyl-3-phenyl--6,9-dihydroazolo[4,5-f]quinolin-9(3H)-ones V and $V I$

Com: pound	$\mathrm{H}-2$	$\mathrm{H}-4$	$\mathrm{H}-5$	$\mathrm{H}-7$	$\mathrm{H}-11$	$\mathrm{H}-13$	$\mathrm{H}-14$	R^{1}	$J(4,5)$	$J(13,14)$	
$V a$	9.33	8.08 d	8.15 d	9.27 s	2.60 s	7.18 d	7.22 d	2.17 s	9.3	8.7	
$V b$	9.17	7.92 d	8.01 d	9.14 s	2.43 s	7.13 d	7.23 d	-	9.0	9.0	
$V l a$	-	7.92 d	8.01 d	9.08 s	2.40 s	7.02 d	7.10 d	1.97 s	9.3	7.5	
$V l b$	-	7.98 d	8.08 d	9.14 s	2.46 s	7.25 d	7.29 d	-	9.3	9.0	

Table V
${ }^{13} \mathrm{C}$ NMR chemical shifts (ppm; $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$) of substituted 1-phenyl-5-aminobenzimidazoles III and 1-phenyl-5-aminobenzotriazoles IV

Carbon	IIIa	IIIb	IIIC	IIId	IIIe	IIIf	IIIg	IIIh	IVa	IVb	IVc	IVd	IVe	IVf	IVg	IVh
C-2	$143 \cdot 9$	$144 \cdot 6$	$\begin{aligned} & 144 \cdot 3 \\ & 144 \cdot 4 \end{aligned}$	144.5	144.3	$144 \cdot 4$	144.4	$144 \cdot 3$	-	-	-	-	-	-	-	-
C-3a	144.4	$144 \cdot 4$	$\begin{aligned} & 144 \cdot 6 \\ & 144 \cdot 8 \end{aligned}$	$144 \cdot 3$	144.5	$\begin{aligned} & 144 \cdot 6 \\ & 144 \cdot 5 \end{aligned}$	$144 \cdot 5$	$\begin{aligned} & 144 \cdot 2 \\ & 144 \cdot 1 \end{aligned}$	$146 \cdot 4$	$146 \cdot 5$	$\begin{aligned} & 146 \cdot 3 \\ & 146 \cdot 2 \end{aligned}$	$146 \cdot 1$	$146 \cdot 1$	$146 \cdot 5$	$146 \cdot 2$	$146 \cdot 5$
C-4	108.8	109.0	$109 \cdot 4$	$\begin{aligned} & 109 \cdot 0 \\ & 109 \cdot 3 \end{aligned}$	108.9	108.9	108.9	$108 \cdot 8$	$107 \cdot 2$	$107 \cdot 3$	$\begin{aligned} & 107 \cdot 5 \\ & 107 \cdot 2 \end{aligned}$	$107 \cdot 5$	$\begin{aligned} & 107 \cdot 2 \\ & 107 \cdot 1 \end{aligned}$	$107 \cdot 5$	$107 \cdot 1$	107.4
C-5	134.5	$134 \cdot 7$	$\begin{aligned} & 135 \cdot 4 \\ & 134 \cdot 0 \end{aligned}$	$\begin{aligned} & 134 \cdot 5 \\ & 135 \cdot 4 \end{aligned}$	$\begin{aligned} & 134.5 \\ & 134.4 \end{aligned}$	134-5	$134 \cdot 4$	$134 \cdot 5$	$136 \cdot 6$	$126 \cdot 8$	$\begin{aligned} & 135 \cdot 9 \\ & 137 \cdot 1 \end{aligned}$	$\begin{aligned} & 135 \cdot 8 \\ & 135 \cdot 0 \end{aligned}$	$\begin{aligned} & 136 \cdot 3 \\ & 136 \cdot 2 \end{aligned}$	135-0	$136 \cdot 3$	$135 \cdot 0$
C-6	$115 \cdot 4$	116.0	$\begin{aligned} & 115.5 \\ & 115.3 \end{aligned}$	$\begin{aligned} & 115 \cdot 3 \\ & 115.5 \end{aligned}$	$115 \cdot 0$	115.0	$\begin{aligned} & 115 \cdot 0 \\ & 114.8 \end{aligned}$	$\begin{aligned} & 115.0 \\ & 114.9 \end{aligned}$	$121 \cdot 9$	122.2	$\begin{aligned} & 121 \cdot 4 \\ & 121 \cdot 6 \end{aligned}$	$\begin{aligned} & 121 \cdot 5 \\ & 121 \cdot 2 \end{aligned}$	121.7	121.7	$121 \cdot 2$	121-8
C-7	111.2	111.5	$\begin{aligned} & 111 \cdot 5 \\ & 111 \cdot 3 \end{aligned}$	$\begin{aligned} & 111 \cdot 3 \\ & 111 \cdot 1 \end{aligned}$	111.5	111.4	$\begin{aligned} & 111.5 \\ & 111.4 \end{aligned}$	$\begin{aligned} & 111 \cdot 3 \\ & 111 \cdot 2 \end{aligned}$	112.0	112.0	$\begin{aligned} & 111.9 \\ & 112.0 \end{aligned}$	$\begin{aligned} & 111 \cdot 4 \\ & 111.6 \end{aligned}$	111.9	112.2	112.0	$112 \cdot 3$
C-7a	$133 \cdot 1$	$132 \cdot 2$	$\begin{aligned} & 133 \cdot 3 \\ & 133 \cdot 8 \end{aligned}$	$\begin{aligned} & 132.0 \\ & 132.1 \end{aligned}$	$133 \cdot 1$	132.0	$133 \cdot 1$	132.0	133.8	$\begin{aligned} & 133 \cdot 3 \\ & 133 \cdot 2 \end{aligned}$	133.7	$133 \cdot 1$	133.6	133-3	133.7	$133 \cdot 3$
C-8	153.0	$153 \cdot 6$	$\begin{aligned} & 153 \cdot 3 \\ & 153 \cdot 1 \end{aligned}$	$\begin{aligned} & 153 \cdot 1 \\ & 152 \cdot 7 \end{aligned}$	$\begin{aligned} & 152.4 \\ & 152.3 \end{aligned}$	$\begin{aligned} & 152 \cdot 1 \\ & 152 \cdot 0 \end{aligned}$	$\begin{aligned} & 152.3 \\ & 152.0 \end{aligned}$	$\begin{aligned} & 152.1 \\ & 151.5 \end{aligned}$	153.3	153.3	$\begin{aligned} & 153.1 \\ & 152.7 \end{aligned}$	$\begin{aligned} & 153.0 \\ & 152.3 \end{aligned}$	$\begin{aligned} & 152.2 \\ & 152.0 \end{aligned}$	152.5	152.1	$152 \cdot 4$

C-9	$112 \cdot 3$	$112 \cdot 3$	$83 \cdot 3$	$\begin{aligned} & 83 \cdot 3 \\ & 85 \cdot 9 \end{aligned}$	$\begin{aligned} & 101 \cdot 4 \\ & 101 \cdot 6 \end{aligned}$	$101 \cdot 5$	$\begin{aligned} & 101 \cdot 7 \\ & 102 \cdot 4 \end{aligned}$	$101 \cdot 8$	112.9	113.0	$\begin{aligned} & 84 \cdot 2 \\ & 87 \cdot 3 \end{aligned}$	$\begin{aligned} & 84 \cdot 6 \\ & 87 \cdot 3 \end{aligned}$	$\begin{aligned} & 102 \cdot 3 \\ & 102 \cdot 6 \end{aligned}$	$\begin{aligned} & 102 \cdot 3 \\ & 102 \cdot 5 \end{aligned}$	$102 \cdot 6$	102.6
C-10	199-1	$199 \cdot 3$	$\begin{aligned} & 195 \cdot 8 \\ & 191.7 \end{aligned}$	$\begin{aligned} & 195 \cdot 5 \\ & 191 \cdot 2 \end{aligned}$	197.9	$197 \cdot 8$	$\begin{aligned} & 197 \cdot 9 \\ & 194.8 \end{aligned}$	197-8	$199 \cdot 6$	$199 \cdot 6$	$\begin{aligned} & 195.8 \\ & 191.8 \end{aligned}$	$\begin{aligned} & 195 \cdot 5 \\ & 191 \cdot 2 \end{aligned}$	$198 \cdot 1$	198.4	198.2	198.4
C-11	31.0	$31 \cdot 6$	28.1	$\begin{aligned} & 27 \cdot 8 \\ & 26 \cdot 2 \end{aligned}$	$30 \cdot 3$	$\begin{aligned} & 29 \cdot 8 \\ & 29 \cdot 6 \end{aligned}$	$\begin{aligned} & 30 \cdot 3 \\ & 30 \cdot 1 \end{aligned}$	$29 \cdot 9$	31.6	31.6	28.3	27.9	$\begin{aligned} & 30 \cdot 3 \\ & 30 \cdot 2 \end{aligned}$	$30 \cdot 7$	$30 \cdot 4$	$30 \cdot 8$
C-12	$137 \cdot 3$	$135 \cdot 0$	$\begin{aligned} & 137 \cdot 5 \\ & 137 \cdot 6 \end{aligned}$	$\begin{aligned} & 134 \cdot 0 \\ & 134 \cdot 4 \end{aligned}$	$137 \cdot 4$	134.4	$137 \cdot 3$	$135 \cdot 8$	$138 \cdot 7$	136.8	$\begin{aligned} & 138.7 \\ & 138.8 \end{aligned}$	$137 \cdot 0$	138.5	$136 \cdot 7$	138.5	$136 \cdot 7$
C-13	123-3	125.4	123.5	$\begin{aligned} & 125 \cdot 1 \\ & 125 \cdot 2 \end{aligned}$	123.4	124.9	$123 \cdot 3$	$125 \cdot 0$	122.6	124.4	$122 \cdot 6$	$\begin{aligned} & 124 \cdot 0 \\ & 123 \cdot 9 \end{aligned}$	$122 \cdot 3$	$124 \cdot 4$	122.4	124.4
C-14	$130 \cdot 2$	$130 \cdot 1$	$130 \cdot 5$	129.8	$130 \cdot 3$	$129 \cdot 6$	$130 \cdot 3$	$129 \cdot 8$	$130 \cdot 5$	$130 \cdot 1$	$130 \cdot 5$	129.7	$130 \cdot 2$	$130 \cdot 1$	$130 \cdot 3$	$130 \cdot 1$
C-15	$131 \cdot 1$	$132 \cdot 2$	$\begin{aligned} & 131 \cdot 4 \\ & 130 \cdot 9 \end{aligned}$	$\begin{aligned} & 130 \cdot 6 \\ & 131 \cdot 0 \end{aligned}$	131.2	131.3	$130 \cdot 3$	130.9	129.7	129.6	$\begin{aligned} & 129 \cdot 5 \\ & 129 \cdot 9 \end{aligned}$	129.6	129.7	129.7	129.7	129.7
R	$194 \cdot 8$	$195 \cdot 3$	$\begin{aligned} & 120 \cdot 4 \\ & 117 \cdot 1 \end{aligned}$	$\begin{aligned} & 120 \cdot 0 \\ & 116.8 \end{aligned}$	$\begin{aligned} & 166 \cdot 6 \\ & 166 \cdot 2 \end{aligned}$	$166 \cdot 4$	$\begin{aligned} & 166 \cdot 2 \\ & 167 \cdot 7 \end{aligned}$	$166 \cdot 0$	$195 \cdot 5$	$195 \cdot 5$	$\begin{aligned} & 120 \cdot 1 \\ & 116 \cdot 7 \end{aligned}$	$\begin{aligned} & 119.7 \\ & 116.4 \end{aligned}$	$\begin{aligned} & 166.4 \\ & 166.0 \end{aligned}$	$166 \cdot 7$	$166 \cdot 1$	$166 \cdot 3$
	$27 \cdot 2$	$27 \cdot 6$	-	-	$50 \cdot 7$	$50 \cdot 4$	$\begin{gathered} 59 \cdot 2 \\ 59 \cdot 4 \\ 14 \cdot 2 \\ 14 \cdot 1 \end{gathered}$	$\begin{aligned} & 59 \cdot 0 \\ & 59 \cdot 3 \\ & 13 \cdot 9 \end{aligned}$	$27 \cdot 6$ -	$27 \cdot 6$ -	-	-	$\begin{gathered} 50.8 \\ 50.7 \end{gathered}$	$51 \cdot 1$	59.4	59.6 -
\mathbf{R}^{1}	$20 \cdot 4$	-	$20 \cdot 6$	-	$20 \cdot 4$	-	20.4	-	$20 \cdot 7$	-	$20 \cdot 7$	-	$\begin{aligned} & 20 \cdot 5 \\ & 20 \cdot 4 \end{aligned}$	-	20.5	-

$-(\mathrm{COOEt})<\mathrm{COCH}_{3}$ as shown by the increase in shifts of the respective signals of the carbon atom C-9 (from 82 to 112 ppm).

It is possible to infer the site of protonation of the azole ring in compounds V and $V l$ from the change of chemical shifts of 1-phenyl substituent ($\mathrm{C}-12$) by measuring in trifluoroacetic acid (Table VI).

EXPERIMENTAL

The melting points were measured on a Kofier micro hot-stage. The IR spectra 0.5 mg of the substance per 300 mg KBr) and UV spectra ($1.10^{-4} \mathrm{~mol} / \mathrm{l}$ or saturated solution in methanol, cell width 2 mm) were recorded with a Specord M 80 and a Specord M 40 (Zeiss, Jena) spectrometers, respectively. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured with a Varian VXR-300 instrument at 298 K , the chemical shifts are related to hexamethyldisiloxane for ${ }^{1} \mathrm{H}$ NMR spectra and to $\mathrm{CD}_{3} \mathrm{SOCD}_{3}(\delta=39 \cdot 5)$ or the $\mathrm{CF}_{3} \mathrm{COOD}$ carbonyl $(\delta=164 \cdot 2)$ for ${ }^{13} \mathrm{C}$ NMR spectra. Saturated solutions were measured in a 5 mm multinuclear probe. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded at the spectral width of 4 kHz , number of points 16000 . The ${ }^{13} \mathrm{C}$ NMR spectra were measured at 75 kHz , spectral width 16 kHz and 64 k per spectrum. The number of accumulations of proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra varied between 250 and 1000 . The pulse repetition time 3 s , flip angle 45°.

Table VI
${ }^{13} \mathrm{C}$ NMR chemical shifts (ppm; $\mathrm{CF}_{3} \mathrm{COOD}$) of 8 -acetyl-6,9-dihydro[4,5-f]quinolin-9(3H)-ones V and $V I$

1-Phenyl-5-aminobenzimidazole and 1-Phenyl-5-aminobenzotriazole Derivates III and IV
A solution of 10 mmol 1-phenyl-5-nitrobenzazole derivative in 100 ml methanol was hydrogenated at 120 kPa with 200 mg Raney nickel catalyst until 660 ml hydrogen was consumed. The catalyst was filtered off, a solution of 10 mmol alkoxymethylene compound I in 20 ml methanol was added and the mixture was refluxed 30 min . The mixture was shortly boiled with charcoal, filtered, and most of the solvent was evaporated; the separated product was filtered off and washed with cold methanol. Recrystallization from methanol gave analytically pure products. The yields and other data are presented in Table I.

8-Acetyl-3-phenyl-6,9-dihydroazolo[4,5-f]quinolin-9(3H)-ones V and $V I$
A mixture of 2 g ester $11 l e-H I / h$ (or $I V e-I V h$) and 100 ml Dowtherm was boiled 1 h . The esters dissolved and after few minutes the product precipitated from the reaction mixture. After cooling the product was filtered off and the residual Dowtherm was removed by washing with toluene and ether. For analysis a sample was prepared by recrystalization from aqueous dimethylformamide. The products are rather insoluble substances with meltig points over $360^{\circ} \mathrm{C}$. Yield and other data are presented in Table 1.

The authors wish to thank Mrs Magda Hroboñová for the measurament of UV spectra, Mrs Silvia Markusová for the measurement of IR spectra and Mrs Magda OndrejkoviXová for performing elemental analyses.

REFERENCES

1. Ilavský D., Bobošik V., Martvoñ A.: Chem. Papers 39, 527 (1985).
2. Goljer I., Milata V., Ilavský D.: Magn. Reson. Chem. 27, 138 (1989).
3. Milata V., Ilavský D., Goljer I., Leško J., Basch E.-H.: Bull. Soc. Chim. Fr., in press.
4. Milata V., Ilavský D., Goljer I., Leško J., Chahinian M., Basch E.-H.: Collect. Czech. Chem. Commun. 55, 1038 (1990).
5. Albrecht R.: Progress Research, Vol. 21, p. 9. Birkhäuser Verlag, Basel - Stuttgart 1977.
6. Milata V., Ilavský D.: Collect. Czech. Chem. Commun. 52, 2918 (1987).

Translation revised by J. Panchartek.

